\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\) [202]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 136 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2/3*A*s
in(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)-2/3*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {3123, 3063, 12, 2861, 211} \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {2 A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a
]*d) + (2*A*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) - (2*A*Sin[c + d*x])/(3*d*Sqrt[Cos
[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {-\frac {a A}{2}+\frac {1}{2} a (2 A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{3 a} \\ & = \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {4 \int \frac {3 a^2 (A+C)}{4 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{3 a^2} \\ & = \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+(A+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(2 a (A+C)) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.98 (sec) , antiderivative size = 556, normalized size of antiderivative = 4.09 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {8 C \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin ^3\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d \sqrt {a (1+\cos (c+d x))} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{3/2}}+\frac {2 (A+C) \cot \left (\frac {c}{2}+\frac {d x}{2}\right ) \csc ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-12 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (2,2,\frac {7}{2};1,\frac {9}{2};-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )-12 \operatorname {Hypergeometric2F1}\left (2,\frac {7}{2},\frac {9}{2},-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (4-7 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+3 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+7 \sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^3 \left (15-20 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+8 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \left (\left (3-7 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}-3 \text {arctanh}\left (\sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{63 d \sqrt {a (1+\cos (c+d x))} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{7/2}} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(-8*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2]^3)/(3*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3
/2)) + (2*(A + C)*Cot[c/2 + (d*x)/2]*Csc[c/2 + (d*x)/2]^4*(-12*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{2, 2, 7/2
}, {1, 9/2}, -(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*Sin[c/2 + (d*x)/2]^8 - 12*Hypergeometric2F1
[2, 7/2, 9/2, -(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*Sin[c/2 + (d*x)/2]^8*(4 - 7*Sin[c/2 + (d*x
)/2]^2 + 3*Sin[c/2 + (d*x)/2]^4) + 7*Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*(1 - 2*Sin[c/2
 + (d*x)/2]^2)^3*(15 - 20*Sin[c/2 + (d*x)/2]^2 + 8*Sin[c/2 + (d*x)/2]^4)*((3 - 7*Sin[c/2 + (d*x)/2]^2)*Sqrt[-(
Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))] - 3*ArcTanh[Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (
d*x)/2]^2))]]*(1 - 2*Sin[c/2 + (d*x)/2]^2))))/(63*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7
/2))

Maple [A] (verified)

Time = 12.89 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.67

method result size
parts \(-\frac {A \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-\sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}} a}-\frac {C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}}{d \sqrt {\cos \left (d x +c \right )}\, a}\) \(227\)
default \(-\frac {\left (3 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+3 C \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+3 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}+3 C \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+2 A \sin \left (d x +c \right ) \cos \left (d x +c \right )-2 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{3 d a \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(256\)

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*A/d*(3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))+sin(d*x+c)*cos(d*x+c)
*2^(1/2)+3*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))-2^(1/2)*sin(d*x+c))*(a*(
1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(3/2)*2^(1/2)/a-C/d/cos(d*x+c)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.14 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \, {\left (A \cos \left (d x + c\right ) - A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \frac {3 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right )^{3} + {\left (A + C\right )} a \cos \left (d x + c\right )^{2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a}}\right )}{\sqrt {a}}}{3 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/3*(2*(A*cos(d*x + c) - A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 3*sqrt(2)*((A + C)*a*c
os(d*x + c)^3 + (A + C)*a*cos(d*x + c)^2)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d
*x + c)/((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)))/sqrt(a))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/(sqrt(a*(cos(c + d*x) + 1))*cos(c + d*x)**(5/2)), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.01 (sec) , antiderivative size = 1342, normalized size of antiderivative = 9.87 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/3*(3*sqrt(2)*C*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 -
sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos
(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) -
 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2
*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c
) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I
*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c
)^2 - 4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c)
+ 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c
) + 1)^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1)))/sqrt(a) + (3*(sqrt(2)*cos(2*d
*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*arctan2(((abs(e^(I*d*x + I*c)
 + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*
d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)
^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (
abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)
) + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2
*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos
(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos(1/
2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x
+ c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/(
sqrt(a)*abs(e^(I*d*x + I*c) + 1))) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4
)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 3)*sin(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 4*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*(cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) + 1)*sin(3/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))))*A/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1)*sqrt(a)))/d

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(1/2)), x)